

Content

- The problem
- About data
- What we did
- Results and outlook

Prinziples of experimental design

- Randomization
- Replication
- Blocking

(Fisher, 1925)

+However, in order to draw valid conclusions from the experiment, we need to randomize in a valid way. (Bailey)

Randomization

•However, in order to draw valid conclusions from the experiment, we need to randomize in a valid way.

(Bailey, 2025)

Randomization

- Unbiased estimates of means and error
- Protection against different forms of spatial trend
- Prerequisite for obtaining valid statistical inferences

(Cox 2009; Piepho et al., 2013)

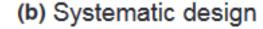
The problem

6	11	5	2	9	1	12	10	3	8	4	7	Replicate 4
8	4	10	12	3	7	6	2	11	1	9	5	Replicate 3
9	12	7	11	8	10	4	1	5	2	6	3	Replicate 2
1	2	3	4	5	6	7	8	9	10	11	12	Replicate 1

Understanding the problem

- Use for demonstration purpuses
- Schuster and Lochow
- "It could have occured randomly, too"

(van Santen and West, 2012)


What does the literature tells us?

- Assume known heterogenity in the field
- Assume that treatments were allocated along the gradient (e.g. best treatment on best plots)
- biased results

(van Santen and West, 2012)

What does the literature tells us?

- Assume gradient in the field
- Assume that treatments were replicated in pseudo-replicates
- → biased results

A	A	A	A
В	В	В	В
C	C	C	C
D	D	D	D
E	E	E	E

(Piepho, 2013)

Not randomizing 1st replicate – is it a problem?

No papers specific on this topic

Not randomizing 1st replicate – is it a problem?

6	11	5	2	9	1	12	10	3	8	4	7	Replicate 4
8	4	10	12	3	7	6	2	11	1	9	5	Replicate 3
9	12	7	11	8	10	4	1	5	2	6	3	Replicate 2
1	2	3	4	5	6	7	8	9	10	11	12	Replicate 1

Not randomizing 1st replicate – is it a problem?

- No, in single experiments with randomized treatment list
- •We further assume that estimated means are unbiased in series of experiment if no neighboring effects exists

But it is a problem! Isn't it?

6	11	5	2	9	1	12	10	3	8	4	7	Replicate 4
8	4	10	12	3	7	6	2	11	1	9	5	Replicate 3
9	12	7	11	8	10	4	1	5	2	6	3	Replicate 2
1	2	3	4	5	6	7	8	9	10	11	12	Replicate 1

How can I prove that it is a problem?

6	11	5	2	9	1	12	10	3	8	4	7	Replicate 4
8	4	10	12	3	7	6	2	11	1	9	5	Replicate 3
9	12	7	11	8	10	4	1	5	2	6	3	Replicate 2
1	2	3	4	5	6	7	8	9	10	11	12	Replicate 1

Approach:

- 1st step: Need data
- •2nd step: Estimate empirical standard errors for all treatment differences (s.e.d._{emp})
- •3rd step: Plot s.e.d._{emp} against the distance in the first replicate (or the average distance across all four replicates)

1st step: Need data

- Historical winter wheat cultivar evaluation trials in Freising
- Data 2014 to 2024

The field plan (in each year)

6	11	5	2	9	1	12	10	3	8	4	7	Replicate 4
8	4	10	12	3	7	6	2	11	1	9	5	Replicate 3
9	12	7	11	8	10	4	1	5	2	6	3	Replicate 2
1	2	3	4	5	6	7	8	9	10	11	12	Replicate 1

1st step: Need data

- Historical winter wheat cultivar evaluation trials in Freising
- Data 2014 to 2024
- Same field plan in all years, varying fields across years
- Kernel harvest (no neighbor effects)
- 12 cultivars, 4 replicates

ID	Cultivar	Year of release				
1	Rimpaus	1888				
2	Tassilo	1930				
3	Heine IV	1940				
4	Heine VII	1950				
5	Jubilar	1961				
6	Diplomat	1966				
7	Komoran	1973				
8	Kanzler	1980				
9	Bussard	1990				
10	Akteur	2003				
11	Elixer	2012				
12	Hy Hyvega	2020				

1st step: Need data

- Historical winter wheat cultivar evaluation trials in Freising
- Data 2014 to 2024
- Same field plan in all years, varying fields across years
- Kernel harvest (no neighbor effects)
- 12 cultivars, 4 replicates
- Systematic treatment list (sorted by release date)

Hochschule Weihenstephan-Triesdorf | Jens Hartung | 22

Perfect data?

No,

- Some cultivars were changed in time
- In early years 11 cultivars, in recent years 12
- Some observations were missing
- In one of four replicates another (second) factor was added, that is also varying across years
- Sowing errors occured in replicate 1 (year 2016)
- **.**...

but it is nearly balanced for cultivars 1 to 9

2nd step: Calculate empirical standard error of cultivar differences (s.e.d._{emp})

- Calculate pairwise differences of cultivars in each replicate and year (assuming RCBD)
- Substract average cultivar pair-by-year difference

 Calculate standard error from these centered differences for each pair of cultivars

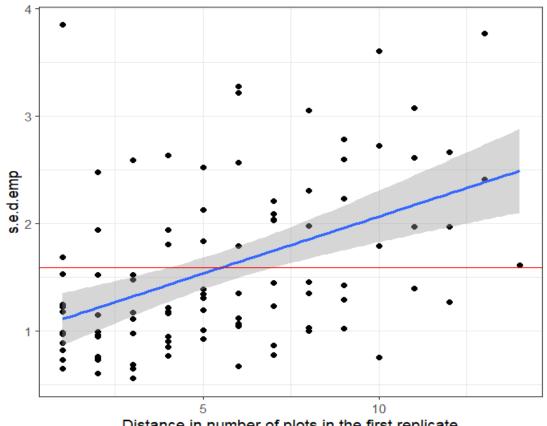
2nd step: Calculate empirical standard error of cultivar differences (s.e.d._{emp})

- Calculate pairwise differences of cultivars in each replicate and year (assuming RCBD) → removes replicate and year effects
- Substract average cultivar pair-by-year difference → removes cultivar-by-year effects
- Calculate standard error of these centered differences for each pair of cultivars

2nd step: Calculate empirical standard error of cultivar differences (s.e.d._{emp})

```
•y_i = \mu + \tau_i + a_j + r_{jk} + (\tau a)_{ij} + e_{ijk}

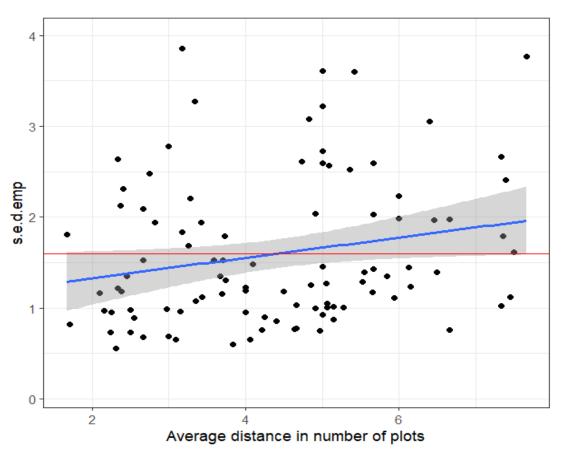
\mu intercept


\tau_i fixed effect of cultivar i

a_j fixed effect of year j

r_{jk} random effect of replicate k in year j

(\tau a)_{ij} fixed effect of cultivar i in year j
```


3rd step: Plot standard error against distance of cultivars in first replicate / average distance

p < 0.0001 $R^2 = 0.20$

y = 1 + 0.11*distance

Distance in number of plots in the first replicate

$$p < 0.0347$$

 $R^2 = 0.05$

$$y = 1.1 + 0.11*distance$$

Results and Outlook (1/2)

- Over-estimates precision of distant cultivar pairs
- Under-estimate precision of neighboring cultivar pairs

Results and Outlook (2/2)

•Are there other options to show that not randomizing the first replicate is a bad idea?

Thank you

for your attention!

Appled Viewer

Jens Hartung, Thomas Ebertseder, Markus Karmann, Hans-Peter Piepho

09.09.2025, Slupia Wielka